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Abstract

Software protection remains an active research area with the goal of preventing

adversarial software exploitation such as reverse engineering, tampering, and piracy.

Heuristic obfuscation techniques lack strong theoretical underpinnings while current

theoretical research highlights the impossibility of creating general, efficient, and in-

formation theoretically secure obfuscators. In this research, we consider a bridge

between these two worlds by examining obfuscators based on the Random Program

Model (RPM). Such a model envisions the use of program encryption techniques

which change the black-box (semantic) and white-box (structural) representations of

underlying programs.

In this thesis we explore the possibilities for white-box transformation. Under an

RPM formulation, if an adversary cannot distinguish an original program from either

its obfuscated version (whose black-box behavior has been strategically altered) or

a randomly generated program of comparable size, then the white-box intent of the

original program has been sufficiently protected. One proposed method of creating

such random indistinguishability is by choosing (at random) a program from a size-

bounded set of all semantically equivalent possibilities.

Since full enumeration of reasonably sized programs is not possible, in this

work we focus on obfuscators which introduce random white-box structural variation

based on iterative selection and replacement. We design and develop an obfuscation

framework for programmatic logic expressed as combinatorial Boolean circuits and

compare six unique approaches for sub-circuit selection. We analyze the relative

behavior of random and guided-random sub-circuit selection algorithms while showing

their utility in producing random white-box structural variation.
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Algorithms for White-box Obfuscation

Using Randomized

Subcircuit Selection and Replacement

I. Introduction

Across the Department of Defense, it is increasingly difficult to find a weapon

systems which does not rely upon software to perform its intended function.

The United States Air Force in particular is reliant on software across every facet of its

mission: air, space, and cyberspace. The ubiquity of software-based systems, and the

interconnectedness of such systems, demands we protect them from our adversaries’

prying eyes. In many cases, physical security is sufficient to thwart anyone who

seeks to gain access to our systems. When physical security fails to protect our

critical software, we must turn to alternate means. One such alternative is software

obfuscation.

1.1 Problem area

Software obfuscation is not a new concept, but neither is it a well-defined dis-

cipline in practice. The concept of software obfuscation is in many ways the un-

raveling of sound development principles. The objective in software engineering is

to produce systems which are defect-free, modular, maintainable, and extensible. A

well-engineered system will function as efficiently as possible, and perform the job the

user expects, in the manner he expects it. The objective in software obfuscation is to

produce highly coupled, difficult-to-understand, complex systems which, nevertheless,

perform the job the user expects, in the manner he expects it (though perhaps with

less efficiency by comparison).

1.1.1 Motivating scenario. In early 2001, the world watched as the US

and China found themselves at odds after what became known as the Hainan Island

1



incident. In brief, a US EP-3 reconnaissance plane and a Chinese Shenyang J-8

collided, and the EP-3 was forced to make an emergency landing on Hainan Island

off the south coast of China. According to a 2 April 2001 UPI press release [11],

“[t]he EP-3 could not have landed in a better place for China or a worse
one for U.S. military intelligence. Hainan island is host to one of China’s
largest electronic signals intelligence complexes and is manned by experts
who can glean critical information on the aircraft’s capabilities if they gain
access to the Navy’s EP-3” . . . Pentagon sources said.

The crew was held hostage for 12 days before being released. The plane, how-

ever, remained on Hainan Island for a total of 94 days, during which time China had

unfettered access to the equipment on board. If the EP-3 crew was unable to entirely

destroy all information storage devices (and the software they contain) before they

landed, then the Chinese had ample opportunity to learn about US collection methods

and targets of interest during the time the plane was in their control. Even if their

examination would have taken more than 94 days, it would have been easy enough to

copy the code (from undamaged equipment) and analyze it after they returned the

aircraft to US custody.

1.1.2 Context. This research augments earlier work initiated by Lt Col

Todd McDonald for his doctorate degree. In his dissertation, McDonald described

software obfuscation as protecting program intent [12]. The concept of intent protec-

tion stands in contrast to traditional definitions of obfuscation, all of which require

that a program’s functionality remain unchanged (without regards to some acceptable

degradation of time and/or space efficiency). Instead, McDonald takes inspiration

from the field of cryptography and likens intent protection to data encryption. The

idea is to transform a program in two ways—structurally and functionally. If func-

tionality (that is, input/output behavior) must change, then it must also be possible

to recover the original behavior (see Figure 1.1). McDonald further requires that an

intent protected program be indistinguishable from any other program, selected ran-

2



Figure 1.1: Program encryption under the Random Program Model

domly, which has a similar number of inputs, outputs, and is of similar size. This he

calls the Random Program Model (RPM).

The difficult question is how to devise a random selection schema. Clearly, for

any but the most basic of programs, software can be written in almost limitless ways

to accomplish the same function. If the set is impossible (or at least infeasible) to

create, an alternate means of “selection” is required.

Rather than attempt to enumerate entire sets of programs, then select a re-

placement in toto, we consider an alternate approach of iterative randomization. This

process obfuscates a program by changing the structure of only a small portion of the

program per iteration, but many iterations produce a randomized program.

For this nascent research, we narrow our focus to combinational Boolean cir-

cuits. This simplifies the problem domain by avoiding non-terminating programs and

program state (memory). Additionally, circuits can be modeled using constructs from

the mathematical discipline of graph theory.

3



1.2 Research objectives

We seek to accomplish two objectives with this research.

1. Develop a software architecture for developing and testing random selection

schema for obfuscating a circuit’s structure.

2. Develop an initial set of selection algorithms and characterize their behavior

with regards to white-box obfuscation.

The first objective above is a means to an end. In other words, to develop

and analyze selection algorithms, we need an architecture which will import, export,

and manipulate combinational Boolean circuits. No complete application is available

to perform the operations we seek to employ, so we developed a software package

(CORGI1) to fill the void. Although CORGI is all new, it integrates an existing Java

library (JGraphT) to represent the circuits as directed acyclic graphs.

For the second objective, we devised candidate algorithms which demonstrate

the concept of random selection and replacement. The algorithms each produce an

obfuscated version of an original circuit. Each circuit produced in this way is a

randomly “selected,” semantically equivalent version of the original, with the selection

occurring as a sequence of steps rather than a single-step selection from a large set.

Although this research is based on a new obfuscation paradigm, the next chapter

explores the current theoretical understanding of obfuscation and how it relates to

our current work.

1CORGI stands for C ircuit Obfuscation via Randomization of Graphs I teratively, and is dis-
cussed in more detail in Section 3.3.1

4



II. Literature Review

Several key papers have been published which provide theoretical bases for why

obfuscation is both impossible and, indeed, possible. Practical applications of

these theories, however, do not appear in the literature. As such, one approach,

the Random Program Security Model, proposes that practical obfuscation is indeed

possible and that a program’s intent can be protected even if the adversary has access

to the obfuscated version of the program. The Random Program Security Model is

fundamentally an analog to data encryption, but applied to programs rather than

data.

2.1 What is obfuscation?

2.1.1 Preliminary definitions. Before delving into the finer details of ob-

fuscation, it is instructive to understand how the word obfuscation is used in several

contexts. In generic speech, to obfuscate means to “make obscure” or “confuse” [13].

As applies to computing, to obfuscate means “to alter code while preserving its

behavior but conceal its structure and intent” [19]. Alternately, obfuscation is “any

efficient semantic-preserving transformation of computer programs aimed at bringing

a program into such a form, which impedes the understanding of its algorithm and

data structures or prevents the extracting of some valuable information from the

plaintext of a program” [18]. These two definitions provide the context for our review

of current theory and techniques for program obfuscation.

2.1.2 Classifications of obfuscation. Program development and execution

involves several steps, and program obfuscation can be applied at one or more of these

steps. Fundamentally, there are three classifications of program obfuscation: layout,

data, and control [3]. Layout obfuscation involves such techniques as scrambling

identifier names and removing layout formatting. Both of these techniques operate

on the source code, and do nothing to alter control flow of the program.

5



Data obfuscation is also primarily focused on altering the source code. Tech-

niques include (a) storage and encoding transformations, which alter the way data

is encoded or manipulated (b) aggregation transformations, which operate on data

structures, and (c) ordering transformations, which change the order of variables and

methods (within classes) and parameters (within methods). To some extent, these

techniques can have an impact on control flow within a program, but it is not the

primary intent. Like layout obfuscation, many of the specific transformations do not

change control flow (although some introduce new control mechanisms).

The final classification is control obfuscation, and its techniques include (a) con-

trol aggregation transformations, which break up computations that logically belong

together or merge computations that do not, (b) control ordering transformations,

which randomize the order in which computations are carried out, and (c) control

computation transformations, which insert new (redundant or dead) code, or make

algorithmic changes to the source application. Control obfuscation techniques, as de-

scribed in [3], are not strictly limited to source code, which means it has more generic

applicability (e.g., assembly language and machine code).

Among the three broad categories described above, general program (circuit)

obfuscation must account for control flow. This becomes clear as we look at additional

definitions of obfuscation.

2.1.3 Theoretical definitions. The first formalized theoretical definition of

program (or circuit) obfuscation was introduced by Barak et al. in [1]. This was a

watershed publication because it formally proved that universal obfuscators do not

exist. It also had the effect of spawning alternate theoretically-based definitions of

obfuscation in several publications which followed. We will look at several of these

definitions here.

6



2.1.3.1 Virtual Black Box Obfuscation. “Informally, an obfuscator O
is an (efficient, probabilistic) compiler that takes as input a program P (or circuit C)1

and produces a new program O(P ) that has the same functionality as P yet is un-

intelligible in some sense” [1]. In lay terms, virtual black box (VBB) obfuscation

can be thought of as some transformation to a program which completely hides all

information about the program except input/output (i.e., black box) behavior, even

though the obfuscated program is itself observable. In that sense, the obfuscated ver-

sion provides virtually equivalent information as could be obtained with only black

box access to the program.

Although informal, the definition above makes no distinction of what constitutes

a program. No mention is made of “source code,” “assembly language,” or “machine

code” anywhere in the paper (save one quote in a footnote). Thus, while there are

clear differences between the three levels of a program, their fundamental nature is

the same. Indeed, their equivalence is evidenced by the fact that programs can be

viewed as boolean (specifically, combinational) logic circuits, and the Barak paper

uses the terms program and circuit almost interchangeably. This is not to imply that

obfuscated source code will necessarily yield object code that is obfuscated to the

same degree (however measured). This remains an open question which, in part, will

be addressed by this thesis.

Barak et al. formally define a (circuit) obfuscator as having these three proper-

ties:

1. Functionality property: For every circuit C, O(C) describes a circuit that com-

putes the same function as C.

2. Polynomial slowdown property: There is a polynomial p such that for every

circuit C, |O(C)| ≤ p(|C|). This property may apply to size, run time, or both.

1Since this concept applies equally to programs and circuits, and since this thesis will specifically
explore obfuscation of circuits, we will limit further discussion to circuit obfuscation. Therefore,
substituting C for P does not alter the definition.
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3. “Virtual black box (VBB)” property: For any probabilistic polynomialtime Tur-

ing machine (PPT) A, there is a PPT S and a negligible function α such that

for all circuits C,

|Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]| ≤ α(|C|) (2.1)

The obfuscator O is efficient if it runs in polynomial time.

From this definition, Barak, et al. prove that no universal obfuscator exists.

The basis of their proof is to show that, for any given obfuscator, there exists a family

of circuits which cannot be obfuscated. “However, it does not mean that there is no

method of making circuits ‘unintelligible’ in some meaningful and precise sense” [1].

To be clear, the impossibility result still allows for a given obfuscator O to be able to

protect some (though not all) families of circuits C. From this, Barak et al. offer a

weaker notion of obfuscation: indistinguishability obfuscation.

2.1.3.2 Indistinguishability Obfuscation. An indistinguishability ob-

fuscator is defined in the same way as a circuit obfuscator, except that the “virtual

black box” property is replaced with the following:

• Indistinguishability property: For any PPT A, there is a negligible function α

such that for any two circuits C1, C2 which compute the same function and are

of the same size k,

|Pr[A(O(C1))]− Pr[A(O(C2))]| ≤ α(k) (2.2)

Observe that the indistinguishability property compares the obfuscations of two

different circuits, unlike the VBB property, which compares an obfuscated circuit to

a simulator which has only black box access to the original circuit. By weakening the

VBB definition in this way, it is provable that obfuscation (however inefficient) is not

impossible.

8



2.1.3.3 Best-Possible Obfuscation. Goldwasser and Rothblum define

an obfuscator as “a compiler that transforms any program (which we will view. . . as a

boolean circuit) into an obfuscated program (also a circuit) that has the same input-

output functionality as the original program, but is unintelligible” [6]. It is clear

that this is the same definition found in [1], but it is nevertheless included because of

the parenthetical comment that programs can be viewed as circuits. This concept is

central to the research presented herein.

2.1.4 Practical applications. Obfuscation software, of varying sophistica-

tion, is widely available from both commercial vendors and open source developers.

Among commercial products, there are several well-known titles. PreEmptive Solu-

tions [16] produces two popular tools: Dotfuscator (for .NET) and DashO (for Java).

Smardec [17], produces Allatori, a Java obfuscator. Yet another company, Semantic

Designs, Inc. [15] has a suite of tools collectively called Thicket™. It provides tools to

obfuscate several languages, including C, C++, C#, Java, JavaScript, Ada, and PHP.

There are, of course, other vendors which offer products that purport to obfuscate

software to some degree, but enumerating them all here is beyond the scope of this

thesis.

On the open source side, the number of projects is as plentiful as on the com-

mercial side. One in particular, ProGuard Java Optimizer and Obfuscator is one of

the most popular projects on SourceForge.net.2

It is not surprising that these companies and open source developers reveal lit-

tle about the inner workings of their obfuscation techniques, except to describe the

results of applying a particular approach (e.g., name obfuscation, flow obfuscation,

string encryption, etc.). Interestingly, however, Semantic Designs’ web site unequiv-

ocally states, “Warning: obfuscators do not stop reverse-engineering efforts by really

determined opponents.” This statement is an acknowledgment of the theoretical work

2From its home page, “SourceForge.net is the world’s largest Open Source software development
web site.” As of 16 Jan 2008, ProGuard was ranked 291 out of 166,996 projects listed.
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of Barak et al. described above. Nevertheless, practical obfuscators are not in short

supply, despite this limitation, which begs the question: “Why not?”

2.2 Shortfalls of current theoretical work

To begin to answer the question of why practical software obfuscators are even

available, much less trusted, one must further ask, “what makes them useful despite

the impossibility results asserted—‘proved ’—by the theoreticians?” The answer is at

least two-fold.

First, commercial and open source obfuscation tools are not typically employed,

for the most part, to hide the purpose of the target software, but rather to hide the

manner in which that purpose is achieved. For example, Microsoft may choose to

obfuscate all or part of the source code for its spreadsheet program, Excel™. The ob-

fuscated version would not hide the fact that the application is a spreadsheet. Rather,

it would hide some portion of the code to prevent competitors from learning how part

of the code is implemented, thus protecting Microsoft’s competitive advantage in the

marketplace. In this way, the obfuscation would be useful, even if though it necessarily

fails the VBB paradigm of perfectly secure obfuscation.

A second (perhaps more profound) reason may be that the tools do not address

obfuscation from a theoretical perspective. In light of an absence in the literature that

correlates theoretical results to practical implementations, it is difficult to make this

claim definitively (i.e., “absence of proof is not proof of absence”). It is nonetheless

intriguing that developers do not relate the strength of their obfuscation schema to

results predicted by the theoretical models.

From a VBB perspective, no obfuscators of any ilk should be useful or benefi-

cial. Although the VBB standard is not achievable in a general, efficient, universal

sense, some amount of obfuscation, as pertains to some as-yet undefined metric of

obfuscation, may be desirable. This is certainly the case with existing obfuscators,

even if not explicitly stated or understood by the developers, because all such tools
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both exist and fail the VBB test. Therefore, the VBB standard is not viable as a

measure of practical obfuscation.

The other two theoretical results mentioned before—indistinguishability obfus-

cation and best-possible obfuscation—are similar. They both relate obfuscation to

some property of the program, and use that to compare obfuscation results to each

other (whereas VBB relates obfuscation to a black box version of a program). This

distinction is subtle, but it opens the door to finding useful obfuscators even if they

fail VBB scrutiny. Unfortunately, the underpinning theory behind indistinguishability

obfuscation and best-possible obfuscation do not offer suggestions on what property

or properties of a program should be the basis of comparison when deciding if an

obfuscator yields indistinguishable results, or the best-possible level of obfuscation.

The research supporting this thesis was conducted to directly address what

properties of a program might (or might not) be useful measures of obfuscation,

and to provide a framework for empirically testing the efficacy of those properties.

In other words, we seek to produce a “tangible” correlation to the theoretical work

which has preceded this research. This objective is an outgrowth of the doctorate

research conducted by Lt Col Todd McDonald. In his dissertation, he suggests a new

paradigm of program obfuscation, the Random Program Security Model [12].

2.3 Random Program Security Model

Recall from [1] the theoretical benchmark definition of an obfuscator—the VBB

paradigm—requires that three properties hold: functionality, polynomial slowdown,

and the VBB property. Under the Random Program Security Model (or simply

Random Program Model, RPM), McDonald replaces two of the three properties,

functionality and VBB [12]. Only the polynomial slowdown property is retained.

For the functionality property, McDonald postulates instead that program ob-

fuscation should apply both black-box and white-box obfuscation techniques. The

principle is that neither approach on its own is sufficient to obfuscate a program.

11



Figure 2.1: The Random Program Model (Program domain)

When combined, however, they act synergistically to overcome the inherent weak-

nesses of each.

For the VBB property, McDonald reasons that if an obfuscated program is

indistinguishable from another program randomly-selected from the same family of

programs (based on inputs, outputs, and size of the program), then the intent of the

original program is protected.

The RPM is similar to, and derived from, data cryptography. RPM models

black-box obfuscation after data encryption, and white-box obfuscation is analogous

to comparing cryptographic data ciphers to random bit strings. Figure 2.1 graphically

depicts the RPM. The obfuscator function, O, uses both black-box and white-box

transforms, as shown in Figure 2.2. These are described below in Sections 2.3.1

and 2.3.2.

2.3.1 Program encryption. Figure 2.3 illustrates the concept of black box

obfuscation using program encryption. For an input x to program P , the result,

P (x) is the unobfuscated output of P . Intermediate result P (x) becomes the input

12



Figure 2.2: RPM obfuscation combines both black-box and white-
box transforms

Figure 2.3: A black box obfuscation P ′′ of program P . P and P ′′ are
not semantically equivalent because P ′′ includes a program, E, which
encrypts the output of P .

of another component, E, which encrypts P (x) based on some key k. The output

E(P (x), k) of E is the overall output of P ′′. Since P (x) 6= E(P (x), k) (i.e., P (x) 6=
P ′′(x)) for a given input x, program P ′′ is thus said to be a black-box obfuscated

version of P .

Program encryption might be sufficient to protect a program if an adversary

never obtains white-box access to the obfuscated program, P ′′. If the adversary did

have white-box access, the demarcation between P and E would be discernible, and

P would be revealed independent of E. Thus, RPM adds white-box protection to

program encryption to achieve overall protection of the program’s intent.
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2.3.2 Intent protection. As previously stated, perfect, efficient, universal

VBB obfuscators do not exist. If an adversary has access to an obfuscated, seman-

tically equivalent program, the adversary will eventually be able to understand the

intent of the original program. McDonald theorizes that program encryption can be

augmented in such a way as to prevent an adversary from being able to isolate P

from E in an encrypted program P ′′. The goal is to hide the fact that there is a

semantics-altering component E. If this is possible, then even if the adversary is able

to (eventually) predict the output of P ′′, such output will be meaningless with respect

to P (x), and program intent will remain protected.

McDonald proposes that if P ′′ (which is not semantically equivalent to P ) is

replaced with a randomly chosen—or produced—program P ′ (which is semantically

equivalent to P ′′), then P is intent protected if the following hold:

• P ′ is such that the adversary cannot distinguish between the functional program

P and the composite encryption program E

• P ′ is indistinguishable from a random program selected from the set of all pro-

grams the same size as P ′

14



III. Methodology

The Random Program Model posits that an intent-protected program is indistin-

guishable from any other program with the same number of inputs and outputs,

and of comparable size. This thesis specifically considers the white-box obfuscation

component of the RPM. In this initial research, a program is modeled as a combi-

national boolean circuit. The circuit is white-box obfuscated by iteratively replacing

random subcircuits with randomly-chosen, semantically-equivalent replacement sub-

circuits. Several algorithms are considered for selecting the subcircuits, and as well

as candidate metrics with which to quantify the level of obfuscation achieved.

3.1 Notation

Since this research follows earlier work conducted by Lt Col Todd McDonald,

we use his notation for the sake of consistency. Table 3.1 provides the notation used

in the discussion which follows.

3.2 Assumptions

The current experimental environment relies on some simplifying assumptions,

which are discussed here.

3.2.1 Programs represented as circuits. Software functionality, at its most

fundamental level, can be represented as a sequence of Boolean expressions. For typ-

ical programs, which include loops (for, while, etc.), sequential boolean circuits map

most directly to the program structure. In general, sequential (cyclic, in graph theory

parlance) circuits can be converted to combinational (acyclic) circuits. Edwards [4]

offers an algorithm which performs this transformation, but warns it is inefficient for

anything but trivially small circuits (his algorithm ran for 51 seconds when oper-

ating on a 281-gate circuit). Despite potential intractability when converting large

sequential circuits, we choose combinational logic over sequential logic because of its

comparative simplicity.
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Table 3.1: Notation used in describing the Random Program Model

Variable Meaning

C A combinational Boolean circuit

C ′
i Original circuit C after i iterations of randomization

C ′, C ′
n Original circuit C after n-iteration randomization is finished

Ω circuit basis. Ω is a set of Boolean functions such that
Ω ⊆ {AND, NAND, OR, NOR, XOR, XNOR, NOT}

CX-Y -S-Ω the class of a circuit, indicating inputs (X), outputs (Y ),
size (S = maximum number of gates), and basis (Ω)

δ, δX-Y -S-Ω circuit family, i.e., the set containing all circuits CX-Y -S-Ω

δC family of circuits semantically equivalent to C (δC ⊂ δ)

The Random Program Model applies not only to the program domain, but to

the circuit domain as well. Figure 2.1 is given again (with only a notational change)

in Figure 3.1 to show the parallel between the two.

3.2.1.1 Combinational circuits. Combinational circuits have no state,

whereas sequential circuits are temporal, which is to say they have memory and feed-

back loops (cycles). Since sequential circuits can be decomposed into combinational

components, it is sufficient at the outset of this research to forgo the former in favor

of the latter. As an aside, combinational circuits sidestep the issue of non-terminating

programs–another complication of sequential circuits.

Our decision to use combinational circuits is supported by [9] which points

out in Chapter IV that a very simple grammar is all that is needed to compute

everything that can be computed by large languages like C and Java. In particular,

the grammar, in Backus Naur form, is shown in Equation 3.1 where B represents

any Boolean expression and E represents any integer expression. It is because of this
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Figure 3.1: The Random Program Model (Circuit domain)

underlying simplicity that any software can be mapped to combinational logic form.

B ::= true|false|(!B)|(B&B)|(B ‖ B)|(E < E) (3.1)

An obvious benefit of choosing combinational logic is that it is easy to un-

derstand. As demonstrated in Equation 3.1 above, only three logic functions are

necessary: NOT (!), AND (&), and OR (‖). There are other commonly used logic

functions (namely NAND, NOR, XOR, and XNOR), but these can be represented

using various combinations of NOT, AND, and OR.

Combinational logic circuits are used across a broad spectrum of applications,

within both the hardware and software domains. At the 1985 International Sym-

posium of Circuits and Systems (ISCAS), the IEEE introduced a set of benchmark

circuits, which are collectively referred to as ISCAS-85 benchmark circuits. [8] They

are particularly useful to our purpose, even though they were initially targeted at the

hardware community. A list of these circuits can be found at [2]. The smallest of

these circuits, C17, is shown in Figure 3.2.
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Figure 3.2: ISCAS Benchmark Circuit C17

3.2.1.2 Directed acyclic multi-graphs. In order to manipulate circuits,

they must be in a format suitable for that purpose. For this research, the discipline of

graph theory provides a suitable application domain. Namely, we represent circuits

as directed acyclic multi-graphs. We turn to Gross and Yellen [7] for a brief

refresher on graph theory terminology to help describe the rationale for choosing

graphs to represent circuits (reference Figure 3.3).

graph: A graph G = (V, E) is a mathematical structure consisting of two finite sets

V and E. The elements of V are called vertices (or nodes), and the elements of

E are called edges. Each edge has a set of one or two vertices associated to it,

which are called endpoints. [Example: All graphs in Figure 3.3.]

The authors correctly allow for edges with only one endpoint, which “is an edge that

joins a single endpoint to itself.” However, such a construct in a circuit would make it

sequential, not combinational. For our purposes, we only consider edges with exactly

two distinct vertices. See the definition for cycle below.

directed edge: A directed edge is an edge, one of whose endpoints is designated as

the tail, and whose other endpoint is designated as the head. An edge is said

to be directed from its tail to its head.

directed graph: A directed graph (or digraph) is a graph each of whose edges is

directed. [Example: Figures 3.3(b), (d), and (f).]
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Figure 3.3: Example graphs.
(a) An undirected graph with no cycles.
(b) A directed graph with no cycles.
(c) An undirected graph with one cycle (1− 2− 3− 4− 1 and 1− 4−
3− 2− 1).
(d) A directed graph with one cycle (1 → 2 → 3 → 4 → 1 only).
(e) An undirected multi-graph with one cycle.
(f) A directed acyclic multi-graph.
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We must limit the graphs we use to directed graphs because in a combinational

circuit, a connection between gates is always from the output of one gate to an input

of another gate.

cycle: A cycle is a nontrivial closed path.1

acyclic graph: An acyclic graph is a graph that has no cycles. [Example: Fig-

ures 3.3(a), (b), and (f).]

Combinational circuits do not have any feedback loops or memory, as do sequential

circuits. Therefore, only an acyclic graph can represent a combinational circuit.

multi-edge: A multi-edge is a collection of two or more edges having identical end-

points. The edge multiplicity is the number of edges within the multi-edge.

multi-graph: A multi-graph is a graph that may contain multi-edges. [Example:

Figures 3.3(e) and (f).]

In a combinational circuit, it is permissible for the output of one gate to be connected

to more than one input of another single gate. The analogous construct in graph

theory is a multi-graph.

directed acyclic graph: A directed acyclic graph (DAG) is a graph that is at the

same time a directed graph and an acyclic graph. It may or may not be a

multi-graph. [Example: Figures 3.3(b) and (f).]

For our purposes, we implicitly accept DAGs as also being multi-graphs. In other

words, DAG and directed acyclic multi-graph carry the same meaning, thus Fig-

ures 3.3(b) and 3.3(f) are both DAGs.

1A path does not repeat any vertex (except possibly the initial/final vertex) or edge. Nontrivial
means the path includes more than one vertex. Closed means the initial vertex is the same as the
final vertex.
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3.2.2 Iterative randomization. The RPM requires that an intent-protected

circuit, C ′, be indistinguishable from a randomly selected circuit, CR. An interesting

aspect of the RPM is that the comparison itself is not influenced by the choice of orig-

inal circuit, C. Consequently, if the obfuscator O does not encrypt (i.e., semantically

transform) a circuit, the indistinguishability comparison can still be performed. This

fact allows us to segregate the white-box component of O from its black-box compo-

nent as we explore randomization methods for white-box obfuscation of circuits.

To perform white-box obfuscation, we consider the process of subcircuit se-

lection and replacement . Two reasons drive us to this choice. First, to randomly

select a white-box replacement of C would require enumeration of all circuits in δC .

As circuit size increases, δC becomes prohibitively large, and the obfuscator suffers

greater-than-polynomial slowdown. Second, the separate steps of subcircuit selection

and subcircuit replacement offer opportunities to inject randomness into the white-

box obfuscation process.

Section 3.4.3 describes selection and replacement in greater detail, but we in-

troduce here the basic of the concept (reference Figure 3.4). Given a circuit C which

is to be white-box obfuscated, select a subcircuit, Csub. Retrieve a randomly chosen

circuit Crep from a library of circuits which contains a set of all circuits semanti-

cally equivalent to Csub (the assumption that such a library exists will be discussed

in Section 3.2.3). Finally, remove Csub from C and insert Crep in its place. As long

as Csub and Crep are semantically equivalent (and the order of inputs and outputs is

preserved), then semantic equivalence exists for C, all C ′
i, and C ′

n.

3.2.3 Circuit library exists. A library of replacement circuits must exist

in order for the process of iterative randomization to be possible. However, in Sec-

tion 3.2.2 we said that enumerating all possible replacements for C would violate the

polynomial slowdown condition of RPM. We overcome this apparent contradiction
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(a)

(b)

Figure 3.4: Two representations of iterative white-box randomiza-
tion.
(a) White-box obfuscation of circuit C by iteratively replacing ran-
domly selected subcircuits (Csub) with a semantically equivalent sub-
circuit (Crep) chosen randomly from a circuit library. C is the unobfus-
cated circuit, C ′

i is C after the ith iteration of replacement, and C ′
n is

C after an n-iteration obfuscation is complete.
(b) Depicts the sequential iterations of subcircuit selection and replace-
ment.
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by developing2 a library whose contents are limited to only small circuits, typically

on the order of 5 or fewer gates. In this way, all semantically equivalent circuits in

a particular family (i.e., all C ∈ δC) can be enumerated. Therefore, in the iterative

replacement process, a given Crep can truly be selected from among all size-bounded

circuits semantically equivalent to Csub.

3.3 Obfuscation toolkit

As this research is empirically based, a software tool was developed to perform

the white-box circuit obfuscation portion of the RPM. Although the RPM calls for

both black-box (program encryption) and white-box (randomization) techniques, they

are performed independently from one another. This allows us to develop software

which only performs the white-box function. The tool has two major components,

CORGI and CXL.

3.3.1 CORGI: the circuit randomizer. CORGI, which stands for C ircuit

Obfuscation via Randomization of Graphs I teratively, was developed to empirically

analyze the RPM. Its development was a major benefit of this research. The inner

workings of the software are described in greater detail in Appendix A. Here, we

briefly discuss the main features of CORGI.

3.3.1.1 Development environment. CORGI is coded entirely in Java.

Several factors influenced this choice. First, there is a strong emphasis on object-

oriented design (OOD) at the Air Force Institute of Technology (AFIT), and Java

is the de facto language of choice for the academic environment. Second, given the

nature of the problem domain (i.e., circuits), OOD is a logical design choice. The

third factor is based on our choice of application domain (i.e., to represent circuits as

graphs), which allowed us to incorporate JGraphT into the development.

2The circuit library used in this research is a product of concurrent research conducted by Capt
Moses James. His research focuses on circuit randomization as a set selection problem.
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Table 3.2: The most notable features and benefits JGraphT con-
tributed to the development of CORGI.

Feature Benefit to CORGI development

Graph package Model CORGI circuits as graphs. In particular,
JGraphT’s graph package included classes for all the
types of graphs described in Section 3.2.1.2.

Subgraph class Manipulate subgraphs without modifying the base
graph. This is a critical component of the subcircuit
selection and replacement process.

Exporter classes Export circuits to standard formats used by vari-
ous graph software packages (e.g., yGraph, GraphVis,
prefuse, etc.). Allows user to render circuits visually.

Algorithms package Contains classes for standard algorithms used in
graph theory. In particular, the CycleDetector class
is a critical part of CORGI because it enforces the
acyclic nature of DAGs.

JGraphT is an open source Java graph library [14]. Its free availability as an

open source project shortened the time to develop CORGI by at least several weeks–

possibly much more. JGraphT provides the means to easily generate graphs and

apply to them many of the common graph theory techniques. It is the crux of what

makes CORGI work. JGraphT not only provides the ability to model the underlying

graph of a circuit, it also has methods and services which make circuit manipulation

and analysis possible. Table 3.2 shows the key features and benefits of JGraphT.

Despite the graph basis for circuit manipulation—as implemented by way of the

JGraphT library—CORGI completely elides from the user any references to graphs or

graph behavior. Thus, CORGI is effectively a translation between the two domains.

3.3.1.2 Subcircuit selection and replacement. Subcircuit selection and

replacement is the principle function CORGI performs. From the user perspective, it

is a single action, but as already described, this function is iterative. We describe in

more detail here the mechanics of how CORGI carries out one iteration of the process

(ref. Figure 3.1).
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CORGI does not actually select subcircuits. Instead, it selects a subset of the

circuit’s gates based on a selection strategy chosen by the user.3 This subset of the

circuit’s gates corresponds to a subset of vertices in the underlying graph, by which

a vertex-induced subgraph (or simply subgraph) is derived. CORGI then copies the

subgraph (leaving the base graph unchanged) and uses it to construct a separate

subcircuit representative of the gates selected.

Next, CORGI uses the new subcircuit’s truth table, along with other user inputs,

to request a replacement from the circuit library (CXL). CXL selects a random,

semantically equivalent, subcircuit replacement (i.e., its truth table is the same). The

original subcircuit is removed from the circuit, and the replacement subcircuit is

inserted in its place.

3.3.2 CXL: the circuit library. CXL is a component of CORGI which

contains a library of circuits. In a sense, CXL is really a library of sets of circuits.

Each set is a circuit family δC where C is characterized by a particular class CX-Y -S-Ω

(ref. Table 3.1).

Because of the various equivalence relationships in Boolean logic, |δC | rapidly

increases exponentially with even small increases in S and/or |Ω|. For practical rea-

sons, we choose S ≤ 3, although we do allow Ω ⊆ {AND, NAND, OR, NOR, XOR,

XNOR, NOT} (i.e., |Ω| ≤ 7).

From a user perspective, CXL is not a separate component from CORGI. Indeed,

CXL is accessed by CORGI via an interface, which is called from within the iterative

function of subcircuit selection and replacement. The user provides parameters which

are used by the interface, but the call itself is not controlled by the user. Because of

this, we consider CXL to be an integrated component of CORGI, and this perspective

is implicit in any further references to CORGI unless otherwise stated.

See [10] for more detailed information on the behavior of CXL.

3The initial implementation of CORGI limits selection to only one or two gates, primarily for
performance reasons, but also due to limitations imposed by the circuit library.
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3.4 Empirical Approach

This research is predicated on the notion that we need empirical data to be able

to demonstrate whether practical obfuscation might be possible in light of theoretic

impossibility results. Perhaps there exist imperfect obfuscators that protect circuits

to a useful, measurable degree. Inherent in the preceding conjecture are two questions:

• What properties of circuits are indicators of useful, measurable circuit

protection?

• What methods of obfuscation produce such properties in circuits?

Since our standard of useful is the RPM, we are really asking what properties

of circuits are indistinguishable between an obfuscated circuit, C ′, and a randomly

selected (generated) circuit, CR. If we know which properties relate to indistinguisha-

bility under the RPM, our intuition is we should be able to easily find algorithms which

produce those properties in C ′. On the other hand, if we know that a particular ob-

fuscator will produce a C ′ which meets the RPM definition of indistinguishability, we

can deduce which properties are indicators of well-obfuscated circuits.

In reality, we do not know a priori the answer to either of the two questions

above. Our approach, therefore, is to work the problem incrementally to see where

the results converge. We briefly consider several candidate properties with which

to measure circuit obfuscation under RPM. Then we propose several algorithms for

performing subcircuit selection as part of the iterative randomization process. These

algorithms are applied to a circuit, C, and then the resulting white-box obfuscated

circuit, C ′, is examined for their effect on obfuscation under RPM. Next, we define

some key concepts used in the discussion which follows.

3.4.1 Key concepts. First, a circuit property, as we shall use the term, is

a descriptor of a single circuit. This is an important distinction since the white-

box circuit obfuscation process we employ is iterative (ref. Figure 3.4), creating

many intermediate circuits Ci
′ before finishing with Cn

′ (Cn
′ is the same as C ′ in
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Figure 3.1). These intermediate circuits provide us the means to measure how a given

property changes throughout the iterative process, but each Ci
′ will have its own set

of properties independent of any other circuit.

Second, since combinational circuits are modeled as DAGs, we look initially to

graph theory for properties of graphs which may be candidate measures of circuit

obfuscation. This choice leads us to also use graph terminology to describe some of

the properties. When this occurs, equivalent terminology—if it exists—is included

parenthetically.

Third, our use of the term path is limited to only those paths which begin at

a circuit input and end at a circuit output. The intention is to describe control flow

through a circuit.

Fourth, DAGs are by their nature hierarchical, thus combinational Boolean

circuits are, too. A circuit’s gate hierarchy is dictated by the predecessor or successor

relationships of the various gates in the circuit. By our convention, if a gate precedes

another gate in some path through the circuit, then the preceding gate is at a higher

level. Equivalently, if a gate succeeds another gate along some path through the

circuit, then the succeeding gate is at a lower level. It is possible that a particular

gate could be assigned to any one of several levels, but our convention is to assign the

gate to the lowest level that preserves the hierarchy of the circuit.

Figure 3.5 demonstrates the concept of gate hierarchy. Note that gate B is at

level 2, not level 1, as is gate C. This is because the longest path from inputs of gate B

to the output of gate D is length 2. Similarly, gate A could have been assigned to

a new level 3, but the addition of the extra level breaks the convention that gates

should be assigned to the lowest level that preserves the hierarchy of the circuit.

Finally, certain proposed circuit properties are frequency distributions, repre-

sented graphically as histograms. An example might be the number of unique paths

that transit each gate. In Figure 3.5, for example, gate A has two unique paths:
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Figure 3.5: A simple example of circuit hierarchy.
(a) A simple circuit (X = 4, Y = 1, S = 4, Ω = {NAND}) without
hierarchical levels.
(b) The same circuit with lowest hierarchy level assigned to each gate.

i0-A-C-D and i1-A-C-D. Similarly, gate B has two, gate C has four, and gate D has

six. The associated histogram is shown in Figure 3.6.

3.4.2 Properties of obfuscated circuits. A property of a circuit may be a

single value (e.g., average path length), or a distribution of values (see Figure 3.6). In

case of the latter, the property will be identified as such. We propose several circuit

properties as candidate measures of circuit obfuscation, without consideration of the

efficacy of each property (see Table 3.3.)

To be clear, the properties listed in Table 3.3 serve two purposes. First, they are

objects of the proposed algorithms (Section 3.4.3 below). Second, they are collectively

a leaping-off point for future research on which circuit properties are strong indicators

of effective obfuscation.
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Figure 3.6: A simple example of a histogram of a circuit property.
The chart represents the frequency of occurrence of gates having a par-
ticular number of unique paths passing through them. In this example
circuit, two gates have two unique paths (gates A and B), one gate has
four unique paths (gate C), and one gate has six unique paths (gate D).

Table 3.3: A set of candidate circuit properties for measuring circuit
obfuscation.

Circuit-level Gate-level

Number of vertices at each hierarchical
level [distribution]

Number of paths through each gate
[distribution]

Set of input/output pairs as deter-
mined by paths through the circuit

Number of unique input/output pairs
represented by paths through each gate
[distribution]

Number of vertex (gate) types (|Ω|) Number of successors of each gate (i.e.,
gate fanout) [distribution]

Number of each vertex type (e.g., AND,
OR, etc.) [distribution]

Number of predecessors of each gate
(i.e., gate fan-in) [distribution]

29



Table 3.4: A set of candidate subcircuit selection algorithms used to
iteratively white-box obfuscate a circuit. Algorithm names are derived
from the file name of the Java class which implements the algorithm in
CORGI.

Selection Algorithm Description

RandomSingleGate Selects a single gate at random

RandomTwoGates Selects two gates at random

RandomLevelTwoGates Selects a hierarchical level at random, and limits re-
placement to two gates selected at random from that
level (±1 level)

FixedLevelTwoGates Same as RandomLevelTwoGates except the hierarchi-
cal level is specified

LargestLevelTwoGates Same as FixedLevelTwoGates except the hierarchical
level is the one containing the most gates

OutputLevelTwoGates Same as FixedLevelTwoGates except the hierarchical
level is 0 (level 0 contains all the output gates)

3.4.3 White-box obfuscation algorithms. CORGI was designed to use mul-

tiple, interchangeable subcircuit selection algorithms. Recall that under the RPM,

an obfuscated circuit C ′, which is semantically equivalent to circuit C, is indistin-

guishable from a random circuit CR. We would like to be able to select C ′ from a

completely enumerated δC′ , but for large |C|, the size of δC′ is prohibitively large to

enumerate all circuits in the set. This limitation forces us to choose another method of

random “selection” of C ′: iterative randomized subcircuit selection and replacement.

The process of obfuscating a large circuit by iteratively randomizing small sub-

circuits provides opportunities and introduces challenges as compared to direct selec-

tion from δC′ . An advantage of the process is that a subcircuit selection algorithm can

be chosen such that it optimizes a particular obfuscation metric. A disadvantage, due

to the fact that the process is a metaheuristic, may be that a particular sequence of

iterations will converge on a final C ′ with a suboptimal value for the target property.
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Table 3.4 lists a candidate set of randomization algorithms developed for this

research with a brief description of each. In Chapter IV, we analyze these algorithms

and how they were derived.
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IV. Results

CORGI is an architecture for obfuscating combinational Boolean circuits via iter-

ative subcircuit selection and replacement. Six strategies for subcircuit selection

are implemented in CORGI as modular algorithms. When executed, these algorithms

transform a circuit C into a randomized (i.e., white-box obfuscated) but semantically

equal circuit C ′. The nature of the transformation is different for each algorithm.

Also, the design of certain CORGI components degrades CORGI performance (run-

time) when some selection algorithms are employed.

4.1 Overview

To perform white-box obfuscation under the RPM on circuit C, we would ideally

like to enumerate all circuits in δC , then select one at random as the semantically

equivalent replacement circuit C ′. Such enumeration is infeasible for large circuits,

which means a replacement circuit cannot be directly selected at random. Instead, it

must be built, but still yield a random C ′ ∈ δC . The process of iterative subcircuit

selection and replacement described in Section 3.2.2 provides two ways for introducing

randomness into the process.

1. Random selection: Select a subcircuit Csub ⊂ C at random.

2. Random replacement : Select a replacement circuit Crep ∈ δCrep at random.

There may also be some intermediate circuit C ′
i for which non-random selection

and replacement are preferred. Here, also, there are two such smart choices.

1. Smart selection: Only select subcircuits which have a particular property. If

the subset of allowable selections contains more than one subcircuit, then one

may be selected at random or based on another property.

2. Smart replacement : Similar to smart selection, only select replacement circuits

from the library which have a particular property. If the subset of allowable se-

lections contains more than one subcircuit, then one may be selected at random

or based on another property.
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4.2 Limitations

Our research exposed certain limitations on the development of subcircuit se-

lection and replacement algorithms. Smart strategies often impinged upon temporal

or spatial efficiency, and the problem domain (i.e., combinational Boolean circuits)

reduced the randomness of random selection strategies as we seek to avoid creating

sequential circuits.

4.2.1 Smart strategies. There are multiple ways to make smart subcircuit

selections. Some examples include choosing only subcircuits with a particular input

size (Xsub), output size (Ysub), circuit size (Ssub), basis (Ωsub), and/or truth table.

Selection can also be made based on particular subsets of the circuit’s gates. For

example, select only subcircuits which have gates in a particular hierarchical level in

the circuit. Other smart selection strategies require searching the underlying graph

for isomorphic subgraphs, which is an NP-complete problem [5]. These can all pose

intractability problems for our iterative randomization process when we have large

circuit sizes, which limits the efficiency of the search algorithm.

Consider a smart selection strategy which is based on subgraph isomorphism.

Since the search is NP-complete, and the search space can be quite large (circuits

with thousands, perhaps millions of gates), the strategy becomes too computationally

intensive to be efficient, as required by the RPM.

Two of the six algorithms (RandomSingleGate and RandomTwoGates) use a

purely random selection strategy which are discussed in Sections 4.3.2 and 4.3.3.

The other four algorithms (RandomLevelTwoGates, FixedLevelTwoGates,

LargestLevelTwoGates, and OutputLevelTwoGates) use a blend of smart and ran-

dom selection, as is described in Sections 4.3.4–4.3.7. None of the latter four algo-

rithms use NP-complete selection strategies.

As for smart replacement, CXL currently has no means to employ such a strat-

egy. The problem is more a limit on space than on time. Specifically, if all replacement

circuits are stored with sufficient metadata, then finding a particular replacement is
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basically a simple lookup in a database. However, as the size bound of candidate

replacement circuits increases, the size of the library increases exponentially, thus

limiting the set from which replacements can be selected.

4.2.2 Introduced cycles. The choice of combinational Boolean circuits places

a particular limitation on which subcircuits may be selected for replacement, as stated

in Axiom 1.

Axiom 1. In order to maintain the combinational structure of circuit C, the set of

gates G(Csub) in a selected subcircuit Csub must not contain any pair of gates (Gi, Gj)

such that (WLOG):

(a) Gi precedes Gj along some directed path in C, and

(b) the longest directed Gi-Gj path in C is ≥ 2.

The results of improperly selecting Csub is shown in Figure 4.1. Figure 4.1(a)

shows a 4-input, 1-output, 4-gate circuit. In Figure 4.1(b), a 3-input, 2-output, 2-

gate subcircuit Csub is selected for replacement. However, Csub contains a pair of

gates, B and D, which violate Axiom 1. Figure 4.1(c) shows that a cycle is created

if Csub is replaced with any replacement circuit Crep. The problem occurs because

gate C receives an output from Csub but also provides an input to Csub, thus creating

a cycle. If Csub is improperly selected, there exists no Crep such that a cycle is not

created.

As a result of this limitation, the manner of subcircuit selection in CORGI

requires a sequential selection of gates for those algorithms which select multi-gate

subcircuits. There are differences in how this is performed for each algorithm, which

are discussed below. The important point here is that, once the set of gates is selected,

the subcircuit is defined (induced) by the set of selected gates, as well as all connections

(“wires”) leading into or out of those gates. It is not necessary that selected gates be

connected directly to each other in C.

34



(a) (b) (c)

Figure 4.1: An example of an improper subcircuit selection and how
it will create a cycle after replacement.
(a) A circuit before subcircuit selection.
(b) Subcircuit Csub is selected. It is not a valid selection since gate B
is a predecessor of gate D and the longest path from B to D is ≥ 2.
(c) A cycle is created after replacing an improperly selected subcircuit,
regardless of what replacement Crep is used.

4.3 Analysis of subcircuit selection algorithms

For this research, six subcircuit selection algorithms were developed. All algo-

rithms adhere to a standard selection interface in CORGI, which does not actually

select a subcircuit Csub directly from a circuit C ′
i. Instead, the interface requires each

algorithm to return a set of gates G. CORGI then uses G, together with JGraphT’s

DirectedSubgraph class to create the subcircuit Csub induced by the selected gates in

set G. Thus, each algorithm returns a set of gates, not a subcircuit. The sections that

follow describe the manner of selection and the “behavior” each algorithm exhibits.

The development of these algorithms was itself an iterative process. As each new

algorithm was developed and tested, the results would suggest alternate strategies for

selection. Therefore, the algorithms are presented below in roughly the same order in

which they were developed.
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4.3.1 Common functions. The overall process of randomization is also

presented in Appendix A (Algorithm 7). For the sake of brevity here, we defer to

Appendix A, Section A.2 for the details of two functions used by the six selection

algorithms discussed below: SelectRandomGate (Algorithm 8) and RejectGates (Al-

gorithm 9). It is sufficient to know that SelectRandomGate randomly selects a gate

from a set of gates, and RejectGates populates a set of gates which should not be

part of the input to SelectRandomGate.

A third function, EstablishGateHierarchy, is used only by the so-called level

algorithms (those for which selection is based on a circuit’s hierarchical level—all

have “Level” in their name). The details of EstablishGateHierarchy are presented

in Appendix A (Algorithm 10), but its basic functionality is to assign each gate to

the lowest allowable level in the circuit’s hierarchy. The details of why this function

is required will be presented in Section 4.3.4, where we introduce the first of the level

algorithms, RandomLevelTwoGates.

4.3.2 RandomSingleGate. RandomSingleGate was the first selection algo-

rithm developed for CORGI. As the name implies, all subcircuit selections Csub are

of the class CXsub-1-1-Ωsub
where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = Ssub = |Ωsub| = 1

Since all Csub contain only one gate, any gate can be selected from C ′
i and

replaced without creating cycles in C ′
i+1 (as long as C ′

i is combinational). The selection

procedure is simple, as shown in Algorithm 1.

RandomSingleGate was developed initially as a simple algorithm by which

CORGI functionality could be tested. The function of removing a subcircuit from

a circuit, then replacing it with a different subcircuit is a non-trivial activity. Se-
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Algorithm 1 RandomSingleGate(C ′
i)

1: Gsub ← ∅ {set of gates (1 in this case) to induce Csub}
2: G(C ′

i) ← set of all gates in C ′
i

3: gk ← call SelectRandomGate(G(C ′
i))

4: Gsub ← Gsub ∪ {gk}
5: return Gsub

lecting a single-gate subcircuit for replacement, while simple to do, provides multiple

dimensions by which to test the process of iterative randomization. When the sub-

circuit is replaced, gate properties such as type (NAND, NOR, etc.), fan-in (number

of adjacent predecessors), fanout (number of adjacent successors), and whether the

selected gate is a circuit output, must all be accounted for.

RandomSingleGate is a purely random (as opposed to smart) selection process.

No knowledge of the target circuit is needed other than the set of gates in the circuit.

The iterative process cannot be guided in any way.

There are three results produced by RandomSingleGate. First, no new external

control flows are introduced in the circuit; second, the size S of C ′
i+1 is never smaller

than C ′
i; and third, the circuit becomes very “tall” (` ∝ n, where ` = number of

hierarchical levels, and n = number of replacement iterations).

The first result is contingent on how we use the term control flow. If we have

access to the structure of a circuit, then every unique path through a circuit is a control

flow. If, however, we only have black-box access to a circuit, then no distinction can be

made between unique paths which share a common source (input) and sink (output).

We will refer to the former as internal control flow and the latter as external control

flow. RandomSingleGate will never introduce new external control flows because all

subcircuit inputs connect to a single subcircuit output. However, RandomSingleGate

will always introduce new internal control flows. The only way RandomSingleGate

does not produce new internal control flows is the trivial case where the selected single-

gate subcircuit is replaced with itself. All other semantically equivalent replacements
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have more than one gate, with connections between them; thus new internal control

flows are always introduced.

The second result is a function of the replacement subcircuits Crep returned by

CXL. In order for a replacement Crep of a single gate subcircuit Csub to change C ′
i,

Crep must have more than one gate. The reason for this is there is no non-trivial

single-gate equivalence between any pair of gates (gi, gj) in Ω = {AND, NAND, OR,

NOR, XOR, XNOR}.

The third result is a natural consequence of the first two. A subcircuit Csub

comprised of a single Boolean logic gate has only one hierarchical level (` = 1). All

nontrivial replacements Crep of Csub have at least two gates. If Crep has n gates, then

it can have 1 ≤ ` ≤ n hierarchical levels. If ` ≥ 2, then C ′
i+1 could “grow”—relative

to C ′
i—by as much as ` − 1 levels (although it may not grow at all). The rate of

growth over many iterations is a function of which gates are selected and the average

number of levels in each Crep selected from CXL.

Reference Figure A.5(b) for a sample result of applying this algorithm to IS-

CAS benchmark circuit C17. As we see from the data presented in Section A.3,

RandomSingleGate produces the tallest C ′ on average among all the circuits.

4.3.3 RandomTwoGates. RandomTwoGates is meant to be a two-gate version

of RandomSingleGate. All subcircuit selections Csub are of the class CXsub-Ysub-2-Ωsub

where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = 1 or Ysub = 2

Ssub = 2

|Ωsub| = 1 or |Ωsub| = 2
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The selection of Csub is accomplished by sequentially selecting the two gates.

The first gate, g1, is selected entirely randomly, in exactly the same fashion as the

gate gk was selected by the RandomSingleGate algorithm. The second gate, g2, must

be selected more carefully, however, in order not to introduce cycles after replacement.

Specifically, g2 can only be selected from a specific subset of gates in C ′
i that remains

after g1 was selected (ref. Section 4.2.2). The procedure is shown in Algorithm 2.

Algorithm 2 RandomTwoGates(C ′
i)

1: Gcand ← ∅ {set of candidate gates to select from randomly}
2: Gcand ← Gcand ∪G(C ′

i) {set of all gates in C ′
i}

3: g1 ← call SelectRandomGate(Gcand)
4: Gcand ← Gcand − {g1} {g1 cannot also be g2}
5: Gcand ← Gcand − {call RejectGates(g1, true)} {remove predecessors of g1}
6: Gcand ← Gcand − {call RejectGates(g1, false)} {remove successors of g1}
7: g2 ← call SelectRandomGate(Gcand)
8: Gsub ← ∅ {set of gates to induce Csub}
9: Gsub ← Gsub ∪ {g1, g2}

10: return Gsub

There were two motivations for developing RandomTwoGates. We wanted to

continue testing the capabilities of CORGI to determine if the selection/replacement

process will work for Crep with more than one output. We also had the intuition

that a replacement for a multi-input, multi-output subcircuit would introduce new

external control flows.

RandomTwoGates is (almost) purely a random selection algorithm. The only

caveat is that not every pair of gates (g1, g2) ⊂ G(C ′
i) are “legal” selections since

some pairs introduce cycles when replaced. Despite the fact that the candidates for

selecting g2 is a subset of G(C ′
i)−{g1}, RandomTwoGates is in no way a smart selection

algorithm.

There were three results from analyzing the behavior of RandomTwoGates. First,

we confirmed our intuition that new external control flows can indeed be intro-

duced. Second, similar to RandomSingleGate, the circuit becomes very tall, with

few gates in any single hierarchical level. Third, RandomTwoGates runs slower than
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RandomSingleGate because CXL must select from a larger store of semantically equiv-

alent replacements as the number of inputs increases. We will discuss each result

separately.

By far the most profound discovery was that new external (and internal) con-

trol flows can be introduced (but it does not always occur). The reason it can is

because the subcircuit selected can be (and often is) comprised of two gates, g1

and g2, which are not adjacent to each other (i.e., g1 is not a predecessor of g2).

If g1 and g2 are adjacent, then the resulting subcircuit Csub will have only one output,

and RandomTwoGates will behave like RandomSingleGate for that single iteration.

The probability P that RandomTwoGates creates a new control flow during any

given replacement iteration i is described by

P (i) ∝
(

1− ne

X × Y

)
× pc × pa (4.1)

where i, ne, X, Y , pc, and pa are described below:

i A particular iteration of the algorithm

ne Number of external control flows in C ′
i before selection

X, Y Number of inputs and outputs, respectively, of C ′
i

pc Probability that CXL returns a replacement subcircuit Crep with
more control flows than Csub (ref. Figure 4.4 for an example)

pa Probability that RandomTwoGates will choose two gates adjacent
to one another (i.e., the output of one gate feeds an input of the
other—ref. Section 4.3.2)

The foregoing can best be demonstrated with an actual circuit. Figure 3.2

depicts ISCAS benchmark C17, which was the target circuit for an experiment to

demonstrate how selection algorithm RandomTwoGates can introduce new external

control flows. A series of 20-iteration trials were performed until the final circuit C ′

had more external control flows than the original C (i.e., ISCAS benchmark C17).

After only seven trials, a C ′ was found with a path from input 1 to output 23, which

was not present in C. CORGI has the capability to output the results of each iteration
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of randomization, and by looking back through the data, we found that the seventh

iteration produced the desired effect. Figure 4.2 shows the transition from C ′
6 to C ′

7

(iteration #7 in this example).

The second result for RandomTwoGates—the fact that it also makes circuits grow

very tall—was somewhat unexpected. In retrospect, it probably should not have been

since the same relationship between the hierarchical levels of Csub and Crep described

in Section 4.3.2 exists for RandomTwoGates. As circuit size increases, the probability

that Csub will have two hierarchical levels (` = 2) decreases since the number of

adjacent gate pairs in C ′
i is exponentially smaller than the number of all gate pairs

in C ′
i. The rate at which a circuit obfuscated with RandomTwoGates grows taller

is, on average, slightly slower than for RandomSingleGate since there is a non-zero

probability that a one-output Csub is selected during a given iteration of subcircuit

selection and replacement.

The third result has to do with a non-intuitive property of circuit families. The

size of a given family δ is a function of several factors, including input quantity,

output quantity, basis, and gate quantity. But it is also a function of the signature

(truth table) of elements of δ. Some families have circuit signatures such that there

are relatively few (sometimes zero) elements. Others families may have thousands of

elements. When a subcircuit Csub is selected such that |δ| is large, the selection of a re-

placement Crep takes longer. RandomTwoGates selects Csub such that δCsub
(from which

CXL must choose a Crep) is, on average, larger than it is when RandomSingleGate

is the selection algorithm. See [10] for more details on the relationship of a circuit’s

signature (truth table) to the size of its circuit family.

Reference Figure A.6(b) for a sample result of applying this algorithm to IS-

CAS benchmark circuit C17. Again, from the data presented in Section A.3, Random-

TwoGates produces C ′ which are, on average, about half the height of circuits pro-

duced by RandomSingleGate.
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(a) Circuit C ′6 with Csub selected (b) New circuit C ′7 with Crep inserted

Figure 4.2: Subcircuit selection and replacement using RandomTwoGates on ISCAS
C17, which creates a new external control flow in the circuit (input 1 [In1] to out-
put 23 [Out23]).
(a) Gates 31 and 32 (Csub) will be removed from C ′

6. Note there is no control flow
from In1 to Out23.
(b) New circuit C ′

7 is created after Csub in circuit C ′
6 is replaced with semantically

equivalent Crep (gates 41, 42, and 43). A new control flow now exists from In1
to Out23 (path: In1→35→41→42→29→40→Out23).
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(a) Circuit C ′7 with Csub selected (b) New circuit C ′8 with Crep inserted

Figure 4.3: Subcircuit selection and replacement using RandomTwoGates on ISCAS
C17, which replaces a two gates, each added during different iterations.
(a) Gates 39 and 43 (Csub) will be removed from C ′

7. Note that gate 39 was not in
the original circuit.
(b) New circuit C ′

8 is created after Csub in circuit C ′
7 is replaced with semantically

equivalent Crep (gates 44, 45, 46, and 47). Because of the structure of the selected
replacement circuit, gates 38 and 35 are each elevated to the next higher layer in the
circuit hierarchy.
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(a) Csub from Figure 4.2(a) (b) Crep from Figure 4.2(b)

Inputs Outputs
26 35 39 31/42 32/43
F F F F T
F F T F T
F T F F T
F T T F F
T F F T T
T F T T T
T T F T T
T T T T F
(c) Truth table of Csub and Crep

Figure 4.4: An example of how a replacement subcircuit Crep can
introduce a new control flow where none existed in the selected subcir-
cuit Csub (reference Figure 4.2).
(a) No control flow exists between gate 35 and gate 29 in Csub.
(b) Subcircuit Crep has a control flow from gate 35 to gate 29.
(c) The truth table of both circuits.
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4.3.4 RandomLevelTwoGates. The RandomLevelTwoGates selection algo-

rithm functions the same as RandomTwoGates except that Gcand only contains gates

which are in at most three contiguous levels of the circuit hierarchy. All subcircuit

selections Csub are of the class CXsub-Ysub-2-Ωsub
where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = 1 or Ysub = 2

Ssub = 2

|Ωsub| = 1 or |Ωsub| = 2

`g2 = `g1 ± 1

The similarity between RandomLevelTwoGates and RandomTwoGates is in how it

selects the first gate, g1. In both cases, g1 is selected entirely at random. Since gate g1

occupies some hierarchical level `g1 , then level `g1 is a de facto random selection.

The difference between these two algorithms is in how gate g2 is selected. With

RandomLevelTwoGates, gate g2 must be selected from within levels `g1 , `g1 + 1, or

`g1 − 1. As we saw with RandomTwoGates, its gate g2 selection can be any gate that

does not introduce a cycle. Note that RandomLevelTwoGates selects two gates which

are within one level of each other. Therefore, no call to RejectGates is required since

it is impossible to introduce a cycle.

Having observed that RandomTwoGates increases the number of hierarchical lev-

els (i.e., the height) at approximately half the rate of RandomSingleGate (see Sec-

tion A.3 for discussion), we developed RandomLevelTwoGates to see if we could further

reduce the rate of height increase relative to the number of iterations performed, yet

retain as much randomness as possible otherwise. The conjecture was that, by limit-

ing subcircuit selection to gates in a single “band” of at most three hierarchical levels,
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Algorithm 3 RandomLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy() {Assigns each gate to a hierarchical level}
2: Gcand ← ∅
3: g1 ← call SelectRandomGate(G(C ′

i)) {A random gate from any level}
4: `g1 ← hierarchy level of gate g1

5: Gcand ← Gcand ∪G(`g1) {all gates in level `g1}
6: Gcand ← Gcand − {g1}
7: if `g1 > 0 then
8: Gcand ← Gcand ∪G(`g1 − 1) {all gates one level below g1}
9: end if

10: if `g1 < `MAX then
11: Gcand ← Gcand ∪G(`g1 + 1) {all gates one level above g1}
12: end if
13: g2 ← call SelectRandomGate(Gcand)
14: Gsub ← ∅
15: Gsub ← Gsub ∪ {g1, g2}
16: return Gsub

the propensity of a replacement circuit Crep to increase the circuit’s height should be

further mitigated.

The fact that we specifically disregard particular levels when choosing g2 makes

RandomLevelTwoGates a smart selection algorithm. Gate g1 is still selected randomly,

but since the subset of gates from which g2 is chosen is dependent on g1, we expect to

be able to better control how RandomLevelTwoGates modifies a circuit. The reason

that g2 is not restricted only to `g1 is because of the nature of subcircuits Crep returned

by CXL. As previously discussed in Section 4.3.2 (page 38), Crep can—and often

does—have more than one hierarchical level. If it occurs that Csub has the same

height as Crep, then the overall circuit C ′
i will not grow in height during iteration i.

There were four results from analyzing the behavior of RandomLevelTwoGates.

First, we confirmed our hypothesis that RandomLevelTwoGates produces shorter cir-

cuits than either RandomSingleGate or RandomTwoGates. Second, we demonstrated

that a smart selection strategy can be employed to guide the behavior of a white-box

obfuscator to a particular end. In this case, we took our observations of how single
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iterations of random selection strategies impacted circuit growth to develop a smart

algorithm.

The third result is the nature of the internal circuit structure. Unlike the two

random selection algorithms, RandomLevelTwoGates has connections (edges) which

span fewer hierarchical levels. This can be observed by comparing Figures A.5(b)

and A.6(b). In the former image, many connections span more that half the length

of the circuit, whereas in the latter image, connections spanning more that eight

levels appear much less frequently. The implication of this finding is that level-based

algorithms could be useful if connection length is a circuit property that correlates to

the degree of obfuscation.

The fourth result has to do with algorithm efficiency. The function Establish-

GateHierarchy is a component of this (indeed, all four) level-based algorithm. It

must be invoked at the beginning of every iteration, as shown in algorithms 3, 4 , 5,

and 6 (line 1 in each). In its current implementation, EstablishGateHierarchy is

inefficient.1 For C ′
i with small size |S|, this is not a problem; but as the number of

iterations increase, the circuit size also increases, and EstablishGateHierarchy slows

down the selection algorithm. Future versions of CORGI must take this performance

factor into account in order that level-based selection algorithms are efficient for large

circuits.

4.3.5 FixedLevelTwoGates. The FixedLevelTwoGates selection algorithm

functions the same as RandomLevelTwoGates except for two differences. Whereas in

RandomLevelTwoGates the target level is based on the selection of gate g1, the opposite

is true here. FixedLevelTwoGates must first have a level `F to target (user input),

and from that level, it selects gate g1 (the numerical value of `F remains constant for

all iterations). In addition, FixedLevelTwoGates selects gate g2 only from levels `F or

`F +1 (not from `F − 1). All subcircuit selections Csub are of the class CXsub-Ysub-2-Ωsub

1The details of why this is the case are discussed in Appendix A
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where

Ωsub ⊂ {AND, NAND, OR, NOR, XOR, XNOR}
Xsub ≥ 2

Ysub = 1 or Ysub = 2

Ssub = 2

|Ωsub| = 1 or |Ωsub| = 2

`g2 = `g1 or `g2 = `g1 + 1

Algorithm 4 FixedLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy()
2: Gcand ← ∅
3: `F ← fixed level where 0 ≤ F ≤ `MAX {user inputs F}
4: Gcand ← Gcand ∪G(`F ) {all gates in level `F}
5: g1 ← call SelectRandomGate(Gcand)
6: Gcand ← Gcand − {g1}
7: if `F < `MAX then
8: Gcand ← Gcand ∪G(`g1 + 1)
9: end if

10: g2 ← call SelectRandomGate(Gcand)
11: Gsub ← ∅
12: Gsub ← Gsub ∪ {g1, g2}
13: return Gsub

The first three algorithms developed successively improved control over cir-

cuit growth as measured by circuit height, yet they each created a wide range of

height results. In other words, over many trials, the data shows a large standard

deviation (σ) for circuit height (see Figure A.2). Our motivation for developing

FixedLevelTwoGates next was to observe whether targeting a single level for subcir-

cuit selection would cause the circuit to grow wider than it did with

RandomLevelTwoGates.

There were two findings regarding FixedLevelTwoGates, one negative, and

one positive. First, it produces circuits which are (on average) both taller and
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narrower than those produced by RandomLevelTwoGates. This is the opposite of

what we expected, but the circuits did exhibit one similarity to those produced by

RandomLevelTwoGates; namely, there are relatively few connections that span more

than 10% of the circuit’s height.

Second, however, FixedLevelTwoGates achieved more predictable behavior rel-

ative to the number of iterations performed (i.e., smaller standard deviation, σ). We

attribute that fact to limiting the selection of gate g2 to only two, rather than three,

contiguous levels in C ′
i. This substantially limits the set of gates from which gate g1

may be selected (the previous three algorithms select gate g1 at random from among

all gates in C ′
i). As a result, this smart selection algorithm has much less randomness,

which may be the basis of the tight coupling between circuit height and number of

iterations.

4.3.6 LargestLevelTwoGates. With LargestLevelTwoGates, we combine

the variable level selection of RandomLevelTwoGates with the targeted level selection

of FixedLevelTwoGates. This algorithm is procedurally the same as FixedLevel-

TwoGates except that the selected largest (widest) level, `W , is calculated for every

iteration.

Algorithm 5 LargestLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy()
2: Gcand ← ∅
3: `W ← widest (largest) level where 0 ≤ `W ≤ `MAX {tiebreaker: smallest `W}
4: Gcand ← Gcand ∪G(`W ) {all gates in level `W}
5: g1 ← call SelectRandomGate(Gcand)
6: Gcand ← Gcand − {g1}
7: if `W < `MAX then
8: Gcand ← Gcand ∪G(`g1 + 1)
9: end if

10: g2 ← call SelectRandomGate(Gcand)
11: Gsub ← ∅
12: Gsub ← Gsub ∪ {g1, g2}
13: return Gsub
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Our objective in developing LargestLevelTwoGates is an algorithm that is ag-

ile enough to “chase” the largest (widest) level as C ′
i grows. The nature of subcircuit

replacement, combined with the rigidity of predecessor relationships in a combinato-

rial Boolean circuit, causes gates to migrate to higher levels in the circuit hierarchy.

When a gate moves from one level to the next, the population of the level it origi-

nally occupied decrements by one. To combat this tendency, LargestLevelTwoGates

always selects gates from the largest level. If multiple levels are largest, choose the

lowest level among them.

Two results from LargestLevelTwoGates are clearly evident in Figure A.7(c).

First, the algorithm provides more control over circuit growth than any of the previous

selection algorithms. From the data in Section A.3, we see the average height of C ′

produced by LargestLevelTwoGates is approximately 54% the average height of

C ′ produced by its nearest competitor, RandomLevelTwoGates. Circuits produced

using LargestLevelTwoGates are also much wider than any of the other circuits.

RandomLevelTwoGates is again the closest competition, but LargestLevelTwoGates

produces C ′ more than twice as wide.

A second result is the fact that LargestLevelTwoGates can introduce external

control flows, just as we first saw with RandomTwoGates. The C ′ circuit represented

in Figure A.7(c) has external control flows In1–Out23 and In7–Out22, whereas the

original circuit C in Figure A.7(a) does not. Thus, LargestLevelTwoGates provides

a high degree of control over circuit growth, yet retains the potential to introduce

control flows.

4.3.7 OutputLevelTwoGates. The last of the six algorithms is another

variation on a theme. OutputLevelTwoGates is, in fact, only a special case of

FixedLevelTwoGates where the target level contains the circuit outputs. In other

words, using FixedLevelTwoGates with `F = 0 is the same as using OutputLevel-

TwoGates. Algorithm 6 shows this special case.
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Algorithm 6 OutputLevelTwoGates(C ′
i)

1: call EstablishGateHierarchy()
2: Gcand ← ∅
3: `0 ← level 0 which only contains circuit output gates
4: Gcand ← Gcand ∪G(`0) {all gates in level `0}
5: g1 ← call SelectRandomGate(Gcand)
6: Gcand ← Gcand − {g1}
7: Gcand ← Gcand ∪G(`1) {all gates in level `1}
8: g2 ← call SelectRandomGate(Gcand)
9: Gsub ← ∅

10: Gsub ← Gsub ∪ {g1, g2}
11: return Gsub

OutputLevelTwoGates was developed purely out of curiosity, and it proved

to be a worthwhile endeavor. When `F > 0 in FixedLevelTwoGates, there is the

possibility that the width of `F can increase. Conversely, the width of a circuit’s

output level (`0) is fixed, so any replacement of a subcircuit that contains an output

gate must not increase the number of circuit outputs.2 The net effect on circuit growth

is best described by way of analogy, followed by three example C ′ circuits produced

by OutputLevelTwoGates.

The behavior of OutputLevelTwoGates resembles the manufacturing process of

extrusion which creates long objects of a fixed cross-sectional profile. In this case,

the cross-sectional profile is circuit width. However, unlike the random algorithms,

OutputLevelTwoGates produces circuits in which all3 levels are approximately the

same width as output level `0. Regardless of how many outputs the circuit has, or

how many iterations are performed, the widest level will contain only a few more

gates than the output level, `0.

To see the extrusion effect, reference C ′ in Figure A.5(c) which has height of

93 levels and widest layer only of 4 gates. But on average, all layers are not 4

2Under the concept of black-box refinement, adding decoy outputs—and inputs—is desireable.
This research does not address the concept, however, so we restrict ourselves to preserving circuit
input and output quantities.

3An exception to this is when, prior to iteration 1, the widest level of C is substantially wider
than `0.
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gates wide; they are only 2 gates wide, which is equal to the number of outputs.

For another demonstration, we apply OutputLevelTwoGates to a different ISCAS

benchmark circuit, C880, which has 26 outputs. The results, for different numbers of

iterations, are shown in Figures A.8–A.10. Again, the average width of all layers is

approximately 26, which is the same as `0.

From these results, we must revisit our observations for FixedLevelTwoGates.

Basically, FixedLevelTwoGates behaves the same as OutputLevelTwoGates, but the

extrusion occurs at some user-defined level. In essence, the target circuit C will be

“split” at the chosen level `F which has a particular number of gates, nF . All levels

0 through `F − 1 will remain unchanged and an extruded subcircuit will connect the

top and bottom of C in the final randomized circuit C ′.

4.4 Runtime performance analysis

We conclude with a brief discussion on the runtime performance of the six

algorithms. This is not intended to be a rigorous examination of CORGI performance,

but instead it will provide an understanding of what factors influence run times as

well as compare the performance of each of the six selection algorithms relative to one

another. Figures 4.5–4.16 contain runtime performance data for the six algorithms as

applied to two different ISCAS BENCH circuits: C17 and c880. Each figure displays

representative results from two trials for each combination (i.e., selection algorithm

and circuit). In all cases, each trial is 1000 iterations. Table 4.1 provides a summary

of the data.

The time required for each iteration of randomization is comprised of the time

needed to perform the selection and the time required for CXL to produce a replace-

ment subcircuit. For all algorithms, the latter is independent of both the structure

of C ′
i and the time required for CORGI to select a subcircuit from C ′

i; however, the

runtime of CXL is dependent on whether it generates an equivalent subcircuit at

runtime, or simply selects an equivalent subcircuit from a static store. For the data

presented here, we used the runtime option. Even though that choice is more time-
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Algorithm
C17 C880

Trial 1 Trial 2 Trial 1 Trial 2
RandomSingleGate 38 ms 37 ms 44 ms 44 ms
RandomTwoGates 441 ms 447 ms 476 ms 504 ms

RandomLevelTwoGates 290 ms 282 ms 430 ms 436 ms
FixedLevelTwoGates 404 ms 393 ms 420 ms 438 ms

LargestLevelTwoGates 350 ms 359 ms 400 ms 373 ms
OutputLevelTwoGates 331 ms 359 ms 438 ms 445 ms

Table 4.1: Summary of runtime data for the six selection algorithms.
The data show the average per-iteration time (in milliseconds) after
1000 iterations for two trials on each of two circuits: C17 and C880.
Times are rounded to the nearest millisecond.

intensive, the average per-iteration time will remain constant over many iterations.

Therefore, by comparing the results of one selection algorithm to those of another (or

the same selection algorithm applied to different circuits), we can deduce the relative

performance characteristics of CORGI.

RandomSingleGate is the fastest of the six selection algorithms. Each subcircuit

only has one gate, thus the subcircuit only has one output. As a result, CXL can

more quickly return a replacement. The slower times for RandomSingleGate when

applied to C880 vs. C17 is because C880 initially has 437 gates to only 6 gates for

C17.

The remaining five selection algorithms are substantially slower than Random-

SingleGate primarily because selected subcircuits contain two outputs. Therefore,

the library of equivalent subcircuits in CXL is substantially larger. Since, for our

experiments, CXL generates the equivalent subcircuits at runtime, the per-iteration

times increase substantially as compared to RandomSingleGate.

RandomTwoGates is the slowest of the six selection algorithms. RandomTwoGates

is the only selection algorithm that calls RejectGates (Algorithm 9), which is a

recursive DFS.

For the four level-based selection algorithms, average run times over 1000 it-

erations are all less than times for RandomTwoGates. Whereas RandomTwoGates
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calls RejectGates, the four level-based selection algorithms all call EstablishGate-

Hierarchy. This, too, is a DFS, but employs pruning. Pruning is a graph theory

technique for limiting the search space, and in part accounts for the relative speedup

of these four algorithms as compared to RandomTwoGates. Another factor that con-

tributes to the increased speed of these four algorithms is the frequency of selecting

single output subcircuits. Specifically, these algorithms select gates in adjacent hi-

erarchical layers, which means the second gate selected by the algorithms is more

likely to be a predecessor or successor of the first gate selected. The result of such a

selection is a one-output subcircuit, which CXL more quickly produces than it does

two-output subcircuits.
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(a) Trial 1

(b) Trial 2

Figure 4.5: Sample per-iteration runtime data from applying selection algorithm
RandomSingleGate to circuit C17.
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(a) Trial 1

(b) Trial 2

Figure 4.6: Sample per-iteration runtime data from applying selection algorithm
RandomSingleGate to circuit C880.
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(a) Trial 1

(b) Trial 2

Figure 4.7: Sample per-iteration runtime data from applying selection algorithm
RandomTwoGates to circuit C17.
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(a) Trial 1

(b) Trial 2

Figure 4.8: Sample per-iteration runtime data from applying selection algorithm
RandomTwoGates to circuit C880.

58



(a) Trial 1

(b) Trial 2

Figure 4.9: Sample per-iteration runtime data from applying selection algorithm
RandomLevelTwoGates to circuit C17.
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(a) Trial 1

(b) Trial 2

Figure 4.10: Sample per-iteration runtime data from applying selection algorithm
RandomLevelTwoGates to circuit C880.
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(a) Trial 1

(b) Trial 2

Figure 4.11: Sample per-iteration runtime data from applying selection algorithm
FixedLevelTwoGates to circuit C17.
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(a) Trial 1

(b) Trial 2

Figure 4.12: Sample per-iteration runtime data from applying selection algorithm
FixedLevelTwoGates to circuit C880.
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(a) Trial 1

(b) Trial 2

Figure 4.13: Sample per-iteration runtime data from applying selection algorithm
LargestLevelTwoGates to circuit C17.
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(a) Trial 1

(b) Trial 2

Figure 4.14: Sample per-iteration runtime data from applying selection algorithm
LargestLevelTwoGates to circuit C880.
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(a) Trial 1

(b) Trial 2

Figure 4.15: Sample per-iteration runtime data from applying selection algorithm
OutputLevelTwoGates to circuit C17.
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(a) Trial 1

(b) Trial 2

Figure 4.16: Sample per-iteration runtime data from applying selection algorithm
OutputLevelTwoGates to circuit C880.
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V. Conclusions

The work described in the foregoing chapters comprises only the beginning of

a much larger effort. Going forward, we expect a steep learning curve given

the “obstacle” of the impossibility result presented in [1]. However, this research—

combined with that which will follow—seeks to set intent protection (which alters

structure and function) apart from the common understanding of obfuscation (which

only alters structure). In this research, we focused only on the process of white-box

obfuscation, a necessary but not sufficient component of program intent protection.

We further narrowed our scope to white-box obfuscating combinational Boolean cir-

cuits. We developed an architecture for manipulating circuits, and developed an

initial set of algorithms for white-box obfuscating circuits via subcircuit selection and

replacement.

5.1 Contributions

Perhaps our biggest contribution to our area of study is CORGI, the tool upon

which this and future research is based. As with any new software, its development

was not without difficulty. However, without CORGI, the process of subcircuit selec-

tion and replacement would have been entirely manual which would have yielded little

data: calculations by-hand would simply take too long. On the other hand, the time

spent to develop a stable architecture clearly impacted the number and complexity of

selection algorithms that were produced. We view this tradeoff as appropriate since

it will allow future research to focus on the process of obfuscation rather than the

tool that performs the task.

The six subcircuit selection algorithms we produced yielded some surprising

results, and they gave us new insights into the heretofore untested process of subcir-

cuit selection and replacement. The RandomTwoGates algorithm alone provided two

valuable results. First, it demonstrates that the gates of a subcircuit need not be

connected to be selected. Additionally, RandomTwoGates also demonstrates how a

circuit library (CXL) can provide replacement subcircuits that introduce new control

67



flows in the circuit. These results mean that completely disparate portions of a circuit

can be intertwined, both from a black-box (functional) and a white-box (structural)

perspective.

All six of the algorithms revealed that circuit size always increases when only

one or two gates are selected for replacement. For single-gate subcircuits, all re-

placements have at least two gates. For a two-gate subcircuit, if its function is not

semantically equivalent to a basic gate (AND, NAND, OR, NOR, XOR, or XNOR),

then all replacement circuits in the circuit library will be, on average, larger than two

gates. Unless and until we devise algorithms that select three or more gates can we

expect to reduce circuit size. The ability to either increase or decrease circuit size

is how the process of subcircuit selection and replacement will be able to produce a

truly random circuit from a particular circuit family.

Finally, the three “smart” algorithms, especially, LargestLevelTwoGates, show

how circuit growth can be controlled and predicted, even when the selection algorithm

produces ever-increasing circuit size.

5.2 Future work

As alluded to above, we see 3-gate selection algorithms as the most important

next step in devising an intent protection framework. One approach is to extend

RandomTwoGates to select a third gate at random. This may be the easiest to do, but

our insight is that it will provide results which will guide the development of other

algorithms. In particular, as another approach, it may be advantageous during some

iteration of selection to chose only subcircuits for which there is a large population

of replacements in the circuit library.1 Such a strategy will require the algorithm

to find subcircuits with a particular truth table. In graph theory, this is known as

subgraph isomorphism, and is an NP-complete problem. Depending on circuit size,

it may nonetheless be a feasible approach.

1This assumes the library has a cache of metadata on its stores of circuit libraries which can be
quickly and easily searched.
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There are at least two ways CORGI can be augmented which have nothing to do

with the algorithms directly. Currently, CORGI maintains no historical log of what

steps and in what order were performed to obfuscate a circuit. A future version of

CORGI with this capability would benefit the notion that an original circuit can be

recovered from an obfuscated version. In a sense, such a log file would be analogous

to a data encryption key for the white-box portion of the obfuscator. It remains to be

seen what advantages might accrue for the cost of this operation, but its a question

worth exploring.

Finally, CORGI is a solid proof-of-concept tool, but to make it better suited

to the research, two major augmentations need to occur. An obvious shortfall is the

need for a better user interface. Although not addressed in this text, the tool func-

tionality was accessed for this research entirely through test cases since the textual

user interface was too cumbersome for repeated experimentation. Ideally, a graphical

user interface will be developed so that rapid selection of input parameters and selec-

tion algorithm(s) will further keep the focus on experimentation rather than coding.

CORGI also needs a review of the efficiency of some of its processes (not the selection

algorithms themselves). Under the hood, there are several methods which employ re-

cursive search algorithms that are not very efficient. They become even less efficient

as circuit size increases. By instituting some optimization techniques, and limiting

calls to these methods only when necessary, CORGI will be more likely to achieve, at

worst, polynomial slowdown for large circuits.
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Appendix A. CORGI software

A.1 CORGI architecture

A.1.1 Functionality. CORGI is a Java application which employs a model-

view-controller (MVC) architecture. In Figure A.1 (page 71), the model is the

Circuit, which is composed of Gate objects. The controller is CircuitController.

The view is the UserCommandParser, which provides the user a text-based user in-

terface.

A.1.1.1 JGraphT. The Java graph library JGraphT, introduced in

Section 3.3.1.1, is the “engine under the hood” of CORGI. Recall, the ‘G’ in CORGI

stands for graphs, and JGraphT is what allows us to manipulate circuits as DAGs,

yet elide that fact from the user. Every circuit has an underlying graph (DAG), so

Circuit is really a façade for a JGraphT DirectedGraph.

All circuit modifying behavior is contained in Circuit; however, the mechanism

of subcircuit selection and replacement is modularized as a separate class, ... (more

to come)

A.2 Non-selection algorithms

For the sake of brevity in the main text, the discussion of the non-selection al-

gorithms is presented here. The entire process of subcircuit selection and replacement

is given in Algorithm 7. The procedures for removeSubCircuit, fetchReplacement,

and insertReplacement are elided since they are purely “mechanical” in the sense

that they do not impact the selection process. Once a subcircuit Csub is selected from

circuit C ′
i, then these three methods will, respectively, remove Csub, get a replacement

circuit Crep from CXL, then insert Crep in place of Csub.

Algorithm 8 (SelectRandomGate) and Algorithm 9 (RejectGates) are helper

methods used by the six selection algorithms discussed in Chapter IV. SelectRandom-

Gate simply selects a single gate at random from among a set of gates. This capability

is needed since subcircuit selection relies on a sequence of random gate selections.
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Figure A.1: The UML class diagram which shows the CORGI architecture.
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Algorithm 7 performReplacement(Selection(C ′
i))

1: C ′
i ← circuit C after i iterations of randomization

2: Gsub ← ∅ {subset of gates in C ′
i: Gsub ⊂ G(C ′

i)}
3: Gsub ← call Selection(C ′

i) {the interface for the selection algorithms}
4: Csub ← call RemoveSubCircuit(Gsub)
5: Crep ← call FetchReplacement(Csub) {this is the CXL interface}
6: C ′

i+1 ← call InsertReplacement(Crep)
7: return C ′

i+1 {circuit C ′
i after replacing Csub with Crep}

Algorithm 8 SelectRandomGate(G)

Require: G is a non-empty set of gates
1: k ← uniform random number such that 0 ≤ k < |G|
2: gk ← the kth gate in G
3: return gk

RejectGates identifies the set of all gates which lie on all paths through a

particular gate and which are more than one hierarchical level removed from said

gate. RejectGates is the means by which performReplacement prevents cycles from

being introduced in C ′
i+1 when replacing a subcircuit that contains more than one

gate.
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Algorithm 9 RejectGates(gk, P )

Require: P true for predecessors of gk, false for successors of gk

1: Grej ← ∅ {set of rejected gates}
2: Gcurr ← ∅ {set of gates being considered for rejection}
3: Gprev ← ∅ {set of gates already considered for rejection}
4: Gnext ← ∅ {set of gates to be considered for rejection}
5: Gadj ← ∅ {set of predecessors (successors) of a gate}
6: Gcurr ← Gcurr + gk

7: if P = true then
8: Gadj ← predecessors of gk

9: else
10: Gadj ← successors of gk

11: end if
12: for all gates ga in Gadj do
13: if difference between hierarchy levels of ga and gkis > 1 then
14: Gcurr ← Gcurr ∪ {ga}
15: end if
16: end for
17: Gadj ← ∅
18: while Gcurr 6= ∅ do
19: Gnext ← ∅
20: for all gates Gc in Gcurr do
21: if P == true then
22: Gadj ← predecessors of Gc

23: else
24: Gadj ← successors of Gc

25: end if
26: Gnext ← Gnext ∪Gadj

27: end for
28: Gprev ← Gprev ∪Gcurr

29: Gcurr ← ∅
30: Gcurr ← Gcurr ∪Gnext

31: end while
32: return Grej

EstablishGateHierarchy is a circuit function that sets the hierarchy at-

tribute for all gates in the circuit. When there are multiple paths between a particular

pair of gates, and when one path is shorter than the other (in terms of number of

gates along the path), then one or more of the gates on the shorter path could legally

occupy any one of several levels in the hierarchy. We choose to assign gates to the
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lowest possible level that adheres to this convention: every gate in the circuit will

always occupy a level that is lower (smaller) than the level of any of its predecessors.

Algorithm 10 EstablishGateHierarchy()

1: label all gates as `0

2: `G ← 0 {initialize global maximum level}
3: `L ← 0 {initialize local (output) maximum level}
4: for all circuit output gates gout do
5: `L ← call SetGateHierarchies(gout, 0, 0)
6: `G ← MAX(`L, `G)
7: end for

None of the so-called level -based selection algorithms would function properly

without EstablishGateHierarchy. EstablishGateHierarchy, in turn, relies upon

the recursive function SetGateHierarchies (described in Algorithm 11). The way

it works is to perform a DFS beginning at each circuit output, explore that output’s

predecessor tree (in the underlying DAG), and set the the hierarchy attribute for all

gates along the way. Some pruning is performed, but there will invariably be gates

that are visited at least twice, which makes EstablishGateHierarchy inefficient.

Since so much of CORGI relies on gates having a correct hierarchy attribute, future

versions of CORGI will benefit greatly from optimizing EstablishGateHierarchy.

Algorithm 11 SetGateHierarchies(gi, `L, `G)

1: for all predecessor gates gj of gate gi do
2: if `(gj) ≤ `(gi) then
3: `(gj) ← `(gj) + 1
4: `G ← call SetGateHierarchies(gj, `L + 1, `G)
5: end if
6: return MAX(`L, `G)
7: end for

A.3 Selection algorithm behavior

Figures A.2, A.3, and A.4 give insight into the behavior of the six selection

algorithms.
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Algorithm Hmax Havg Hmin Hσ

R1G 291 183.7 117 61.5
OL2G 103 97.7 90 4.8
R2G 119 89.9 75 15.6
FL2G 78 69.6 62 5.1
RL2G 87 65.6 46 14.0
LL2G 46 35.2 31 4.2

(a)

Algorithm Wmax Wavg Wmin Wσ

R1G 9 6.3 4 1.5
OL2G 5 4.4 4 0.5
R2G 7 5.3 4 1.1
FL2G 6 5.4 5 0.5
RL2G 8 6.8 5 1.2
LL2G 20 14.8 12 2.4

(b)

Algorithm Havg/Wavg Growth(%)
R1G 29.2 90.4

OL2G 22.2 47.4
R2G 17.0 43.5
FL2G 12.9 33.3
RL2G 9.6 31.3
LL2G 2.4 16.1

(c)

Figure A.2: Experimental results from performing ten trials of 200 iterations each
using all six selection algorithms, with ISCAS circuit C17 as the target C. To pro-
vide a common mode of comparison, all three tables are sorted in decreasing order
of Havg.
(a) The number of hierarchical levels in C ′ (maximum, average, minimum, and stan-
dard deviation).
(b) The number of gates in the widest hierarchical level of C ′ (maximum, average,
minimum, and standard deviation).
(c) Height-to-width ratio and rate at which number of hierarchy levels increase per
iteration.
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Figure A.3: Chart of data from Figure A.2(a).
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Figure A.4: Chart of data from Figure A.2(b).
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A.4 Selection algorithm results

A.4.1 C17 with all algorithms. Figures A.5, A.6, and A.7 display examples

of the results achieved when each of the six algorithms are applied to a simple ISCAS

benchmark circuit, C17. In each case, the algorithm ran for 200 iterations. The

images are DAGs which represent the various circuits. While they are not strictly

circuits, they demonstrate the behavior of each algorithm. All images are drawn to

relative scale for ease of comparison.1

A.4.2 C880 with OutputLevelTwoGates. Figures A.8, A.9, and A.10 shows

how circuit C880 changes over time when randomized using the OutputLevelTwoGates

selection algorithm. Compare Figure A.8 to Figure A.5(c). Note that C880, which has

26 outputs, grows in height much more slowly than does C17, which has 2 outputs,

when OutputLevelTwoGates is applied for 200 iterations.

1When viewing this document electronically in PDF format, the circuit details can be seen by
zooming in to at least 1600% magnification.
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Figure A.5: Comparison of original circuit (ISCAS C17) to sample results of R1G
and OL2G algorithms (200 iterations; circuits represented as DAGs).
(a) C = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).
(b) C ′ after applying RandomSingleGate to C (height = 189 levels, width = 7
gates).
(c) C ′ after applying OutputLevelTwoGates to C (height = 93 levels, width = 4
gates).

79



In1

10 In2

16

In3

11

In6

In7

19

Out22 Out23

(a)

In1

261

386

572604

608

In2

512

598

599

In3

179

321

343

364

378

393

499

523

566

586

602

In6

110

189

271

334

366426

532

In7

70

418

587

610

612

33

349

175

344

160

520

521

585

163

517

167

467

168

277

171

448

449

181

184

435

445

447

463

464

510

515516

190

508

509

209

219

439

223

312

360

530

227

235

280

411462

478

237

257

506616

618

249

250

544 545

251

536

Out22

574

268

333

493

495

363

552

593

287

288

494

290

306

Out23

421

327

603

353

527

531

537

579

562

563

356

487

591

359

368

555

367

456

373

514

384

472615

388

403407

525

412

596

406

528

410

413

417

490

497

458

427

428

429

432

550

564

580581

437

540

441

617

601

451

453

471

461465

466

488

470

551

595

481

473

568

476

477

547

518

485

584

607

491

557

613

614

498

501

503

507

546

542

538

590

524

526

529

534

600

558

549

597

570

560

571

605

576

575

578

582

592

594

588

611

606

609

(b)

In1

30

In2

45

In3

2739

In6

In7

62

Out22

Out23

42 43

36

57

54

69

90

47

48

66

93

95

102

113

117

63 75 81

140

70

72

106

96

98

105

153

156

115

114

108

130

126 141

145129

132

135

190

213

147 168

149

150

178

195

171

174

159

185 204 222

237

165

187

196

192

231

277198

209

207

219

216

220

226

244

255

264

225

228

234

243

249

258

259

267

270

282

272

275327

301

273

285

287348

297 306

318

307

291

294

300 351

309

310

343

382

333

324

330

332

336

357

345

354

364

359

369

360

393

366

378384 387 402

370

386 388

396

449

465

399

417

414

429

398

483

416

430

420

423

432

462

433

435

441

442

453

457 456 472

459

468 498

463

474

480

481

500

513

489

519

528543

549

550

495

492

516

497

504

511

534514

537

540

541

553

600

559

545 585

546

552

564

570572

582

621

588

573579

576597

591

603

605

606

612

599

618

601

609

613

615622

619

623

(c)

Figure A.6: Comparison of original circuit (ISCAS C17) to sample results of R2G
and FL2G algorithms (200 iterations; circuits represented as DAGs).
(a) C = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).
(b) C ′ after applying RandomTwoGates to C (height = 93 levels, width = 6 gates).
(c) C ′ after applying FixedLevelTwoGates to C (height = 67 levels, width = 6
gates).
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Figure A.7: Comparison of original circuit (ISCAS C17) to sample results of RL2G
and LL2G algorithms (200 iterations; circuits represented as DAGs).
(a) C = ISCAS benchmark circuit C17 (height = 3 levels, width = 3 gates).
(b) C ′ after applying RandomLevelTwoGates to C (height = 61 levels, width = 8
gates).
(c) C ′ after applying LargestLevelTwoGates to C (height = 32 levels, width = 15
gates).
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Figure A.8: C ′ after applying 200 iterations of OutputLevelTwoGates to ISCAS
benchmark circuit C880 (height= 42 levels, width= 38 gates).
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Figure A.9: C ′ after applying 400 iterations of OutputLevelTwoGates to ISCAS
benchmark circuit C880 (height= 60 levels, width= 31 gates).
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Figure A.10: C ′ after applying an additional 800 iterations of
OutputLevelTwoGates to the circuit C ′ in Figure A.9 (height= 98 levels,
width= 33 gates).
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